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ABSTRACT
The current pandemic called COVID-19 caused by the SARS-CoV-2 virus brought the need for the search 
for fast alternatives to both control and fight the SARS-CoV-2 infection. Therefore, a race for a vaccine 
against COVID-19 took place, and some vaccines have been approved for emergency use in several 
countries in a record time. Ongoing prophylactic research has sought faster, safer, and precise alternatives 
by redirecting knowledge of other vaccines, and/or the development of new strategies using available 
tools, mainly in the areas of genomics and bioinformatics. The current review highlights the development 
of synthetic antigen vaccines, focusing on the usage of bioinformatics tools for the selection and 
construction of antigens on the different vaccine constructions under development, as well as strategies 
to optimize vaccines for COVID-19.
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The current pandemic called COVID-19 caused by the SARS- 
CoV-2 virus is responsible for over 200 million cases and 
4 million deaths.1 It has also brought the need for new political, 
economic, and social perspectives which maximize the search 
for fast alternatives to both control and fight the SARS-CoV-2 
infection. Therefore, a race for a vaccine against COVID-19 
took place, and in less than a year, some of the studies have 
reached phase 3 of vaccine trials as well as some others have 
been approved for emergency use in several countries.2,3 

Ongoing prophylactic research has sought faster, safer, and 
precise alternatives that can be reached by redirecting knowl-
edge of other vaccines that already exist for other diseases, and/ 
or the development of new strategies using available tools, 
mainly in the areas of genomics and bioinformatics.4 The 
current review highlights the development of synthetic antigen 
vaccines, focusing on the usage of bioinformatics tools for the 
selection and construction of antigens on the different vaccine 
constructions under development, as well as strategies to opti-
mize vaccines for COVID-19.

Vaccine development landscape in the context of 
COVID-19

Vaccines are excellent tools in controlling infectious diseases and 
preventing humanitarian epidemics crisis by inducing the estab-
lishment of an immune response capable of quickly controlling 
and eliminating pathogens. This long-term protection is usually 
characterized by antibody persistence and cell-mediated 
immune response.5 As a result, vaccines are the main 

prophylactic alternative to prevent the spread of COVID-19.6 

There are currently 185 candidates being evaluated during the 
pre-trial vaccine and 102 with eight different technology plat-
forms under clinical evaluation7 (Table 1). So far, 17 vaccines 
have been approved for use in humans in several countries.

Many laboratories have invested in more modern vaccine 
strategies besides older vaccine platforms such as the attenuated 
or inactive virus, especially during the COVID 19 pandemic. 
A survey carried out in silico by Defrancesco2 showed that 
several vaccine platforms are being tested, such as protein sub-
unit vaccines, virus-like particle vaccines, DNA- and RNA-based 
vaccines, viral vector-based vaccines, among other strategies.

Nucleic acid vaccines are new and versatile strategies that 
use recombinant DNA technology for immunization or immu-
notherapy. They consist of viral vector-based vaccines, in 
which a virus unrelated to the pathology, live or inactive, 
carries the genetic material of the target antigen, along with 
DNA- and RNA-based vaccine platforms, in which the gene 
sequence (of one or more genes) encoding the protein of the 
pathogen of interest will be delivered as a vaccine. Another 
alternative used in these nucleic acid approaches is the use of 
epitope coding sequences whose immunogenicity is rigorously 
selected in silico, in the so-called synthetic antigen vaccine. In 
this review, we will focus on these synthetic antigen vaccines, 
which are an interesting strategy since they can combine one or 
more antigens from the same pathogen or even from different 
variants in the same vaccine.27,28 In this review, we will focus 
on DNA and mRNA vaccine platforms, especially multiepitope 
ones that use synthetic antigens.
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Vaccination with non-viral delivered nucleic acid-based 
approaches has the potential of combining the advantages of 
live-attenuated vaccine platforms and subunit vaccines, how-
ever with no need for cultivation of highly pathogenic organ-
isms on a large scale under biosafety level 3 (BSL3). 
Furthermore, the inactivation process of viral vaccines can 
modify the structure of epitopes present in inactivated virus 
vaccines, which does not occur with nucleic acid approaches. 
Moreover, because they have no viral particles in their consti-
tution, they do not offer viral reactivation risks, thus providing 
an excellent option for vulnerable populations, including preg-
nant women, the elderly, infants, and immunosuppressed 
people.29 Table 1 provides a brief description of the different 
vaccine platforms used against COVID-19 with their advan-
tages and disadvantages.

Another advantage of the next-generation approaches is the 
much faster and more versatile production of the immunogen. 
This production makes these platforms ideal for the current 
chaotic pandemic situation, in which it is necessary to produce 
billions of doses simultaneously. Another aspect is that, 
although nucleic acid vaccines have limited coded gene infor-
mation capacity compared to inactive or attenuated virus vac-
cines, such synthetic antigens are predicted to be more 
immunogenic and, because of their reduced size, there is the 
possibility of combining epitopes from different viral strains in 
the same vaccine, in addition to working with several vaccine 
targets simultaneously.

About the flexibility of synthetic antigen vaccines, once the 
manufacturing process is established, a similar process can be 
applied to produce a different vaccine by simply replacing the 
viral antigen coding region with a new insert. Such flexibility 
makes this vaccine platform ideal for controlling the current 
pandemic since there is a great possibility of the emergence of 
new viral variants resistant to the current vaccines in the near 
future, a situation that requires rapid adaptation of the vaccine. 
During the construction of synthetic gene, it is possible to 
evaluate the epitopes conservancy in front of the new corona-
virus lineages from the United Kingdom (B.1.1.7),30 South 
Africa (B. 1.351),30 Brazil (B.1.1.248 – P.1 and P. 2),30,31 India 
(B.1.617 – B.1.617.1, B.1.617.2 and B.1.617.3),30,32–34 USA 
(B.1.427 and B.1.429)30,35 and Nigeria (B.1.525),36 as well as 
its variants. The immunoinformatics tools that work with this 
analysis will be more detailed in the topic Epitope 
Conservation analysis.

mRNA vaccines were the first group of platforms approved 
for emergency use against COVID-19, also representing the 
platform with the highest levels of effectiveness among all 
vaccine platforms to date. Although multiepitope vaccines 
have not registered clinical trials to date, they are still in the 
immunoinformatics approach phase.37–39

Most candidate vaccines developed to control SARS-CoV-2 
infection have the structural antigen S (total length or specific 
subunits) as their main target. The S glycoproteins are the main 
responsible for interaction and viral entrance into host cells 
and based on research on SARS-CoV and MERS-CoV, a strong 
neutralizing effect was associated to trigger specific cell 
T responses and neutralizing antibodies, which makes this 
protein an excellent vaccine target.40,41 Other targets can also 
be incorporated into multiepitope vaccines, like viral proteins Ta
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such as E protein, which forms the viral envelope and can be 
found in higher concentrations during replication of the virus. 
It can also interact with some cellular proteins and, after the 
virion construction process, it can break the cell membrane 
and release the pathogen to the extracellular environment42,43 

which may contribute to the presentation of this antigen to 
immune system cells. The M protein, in turn, is a membrane 
protein that is also associated with viral assembly and its 
specific phosphorylation sites can interact with the host.43,44 

While the protein N remains associated with the genetic mate-
rial of SARS-CoV-2 being related to the viral transcriptional 
and translational apparatus.43 In addition, Mu et al.45 reported 
that it can also act in immune system evasion.

Although little explored in studies involving vaccines 
against COVID-19, accessory proteins can be potential tar-
gets for future vaccine constructions based on their impor-
tance in the viral construction and how it deals with the 
immune response from infection. ORF1ab is a polyprotein 
that is part of the virus replication apparatus. To become 
functional after entry into the cell, it is cleaved into 11 non- 
structural proteins that have different functions, being nsp1 
known for the possible ability to evade the immune 
system.43,46 While ORF3a is an ion carrier protein that 
may be related to the development of the inflammatory 
process of COVID-19 due to the promotion of cytokine 
storm besides virulence and viral replication.47–50 ORF6 
was considered the protein that showed the highest immu-
nosuppression of primary interferon and its signaling.43 

ORF7a, on the other hand, is a protein that acts together 
with nsp1 and nsp3c in a probable interference in the 
innate immune response.43,51 Furthermore, mutations in 
this region should receive greater attention considering 
that this protein can act as a virulence factor.43 The 
ORF8, in turn, is a protein that is either related to the 
pathogenicity or the coronavirus replication apparatus, act-
ing in the interferon pathway of the host. It may also affect 
the recognition of cytotoxic T lymphocytes by interfering 
with presentation via MHC and thus evading the immune 
system,43,52–54 which allows them to explore its use for 
humoral immune response activation.

The nucleic acid vaccines can stimulate different arms of the 
immune response through cross-presentation pathways. The 
intracellular antigens produced by these vaccines are processed 
through the endogenous pathway and, therefore, are capable of 
generating a specific cellular response while still generating 
antibodies. Besides, synthetic antigen vaccines allow the direc-
tioning of immune response by including in the vaccine con-
struct epitopes recognized by B lymphocytes, and MHC-I 
(cytotoxic response) or MHC-II ligands (helper response). 
After translation in the cytoplasm, these antigens are generated 
by proteolysis within the proteasome, followed by their entry 
into the endoplasmic reticulum via TAP transporter for cell 
surface presentation. Meanwhile, activation of the helper 
response occurs via the endocytic pathway, in which somatic 
cells transfected at the injection site produce the vaccine pep-
tides and these, in turn, can be engulfed by DCs or internalized 
as apoptotic bodies. Furthermore, such peptides released into 
the extracellular environment can be directly recognized by 
B cells or even be presented to these cells via a helper response. 

More details on all activation pathways generated by nucleic 
acid approaches, including cellular and humoral responses, can 
be found in Figure 1.

Given the importance of correct processing for the genera-
tion and presentation of vaccine epitopes, it is essential to 
include spacer sequences (also known as linkers) between 
epitopes in the vaccine construct to provide proteasomal clea-
vage and TAP binding sites.55 In addition, other linker 
sequences perform various other functions such as addressing 
and activating specific routes within cell compartments, more 
details can be found in Table 2. Meanwhile, the schematic 
representation of a synthetic multi-epitope vaccine construct 
containing linker sequences can be seen in Figure 2. Another 
important in synthetic antigen vaccines is the stability of the 
antigen after intracellular processing. This analysis is per-
formed using immunoinformatics approaches to each epitope 
of the vaccine construct. More details of this analysis will be 
discussed later in the topic of molecular docking analysis and 
molecular dynamics simulation.

Development of nucleic acid approaches using 
immunoinformatics tools

One of the approaches used in the production of genetic 
vaccines is the usage of Immunoinformatics tools.67 In silico 
analysis is becoming more important each day, especially 
because of the pandemic, the lack of financial resources, and 
the need to construct a vaccine in a short amount of time. 
Thus, the search for free computational tools became a viable 
alternative, capable of minimizing the possible limitations that 
the traditional methods, both in vitro and in vivo, of vaccine 
construction demand, such as the need for experiments that 
are not only time-consuming but need a good laboratory 
infrastructure, which is very expensive.

Advancements in bioinformatics contributed to the devel-
opment of new tools for the analysis of protein compounds 
with drug potential and the assistance in vaccine 
construction.67 It was noted that after the first SARS-CoV-2 
genetic sequence was deposited in GenBank,68 many studies 
were able to use these computational tools during the 
pandemics.4,69–75 Therefore, it is possible to believe that immu-
nologic bioinformatics tools, also named immunoinformatics 
approaches, tend to grow even more after the pandemic.

In silico analysis encompasses a wide range of production 
steps for a gene vaccine against COVID-19, such as the pre-
diction of epitopes, immunogenicity and conservation analysis, 
populational coverage evaluation, molecular docking, and 
molecular dynamics simulation of the epitope-MHC 
complex.76 These analyses allow the selection of epitopes that 
potentially are more effective,77 which is less time-consuming 
when compared to in vitro screening.

It is possible to build a synthetic multiepitope gene that will 
be further validated in vitro and in vivo in order to be used in 
the vaccine trials (Figure 3). This synthetic gene, when tran-
scribed and translated by cells, will act as a synthetic antigen, 
which will hopefully be recognized by the immune system, 
activate the T and B lymphocytes, and produce antibodies.78 

Following, there is a list of steps and tools used in the con-
struction of a synthetic antigen.
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Epitope prediction

The GenBank (https://www.ncbi.nlm.nih.gov/genbank/), at 
the National Center for Biotechnology Information (NCBI), 
is a database of genetic sequences known worldwide, where 

nucleotide sequences for a wide range of organisms can be 
found. In addition, NCBI has a database for amino acid 
sequences, the Protein Database (https://www.ncbi.nlm. 
nih.gov/protein). The availability of amino acid sequences 

Figure 1. Mechanism of action of DNA and mRNA vaccines and the pathways for activating the cellular and humoral response. DNA vaccines are commonly delivered by 
electroporation through transient pores formed in the membrane (1). Thus, the DNA reaches the cell cytoplasm and then the nucleus, where it will be transcribed (2). 
Then the mRNA goes to the cytoplasm, where it is translated in the vaccine peptide (3). Another strategy is the direct delivery of the mRNA (mRNA vaccine) 
encapsulated in lipid nanoparticles in the cell cytoplasm (4). After the endosome escape, the mRNA is translated in the cytoplasm, followed by the vaccine antigen 
processing in the proteasomes (5), where they are cleaved into smaller peptides. Next, the peptides are transported by the TAP transporter (not shown) into the 
endoplasmic reticulum, where they are linked to the MHC-I (6) for TCD8 lymphocyte presentation at the cell surface (7), activating the cytotoxic response and generating 
effective and memory cells. While the cytotoxic response is triggered through the processing of intracellular antigens, the helper response, as a general rule, is triggered 
through the exogenous pathway, in which transfected somatic cells – such as myocytes at the injection site – produce the vaccine peptide (8). The peptides can be 
released outside the cell and be directly engulfed by DCs, or they can be internalized by the apoptotic or necrotic bodies, provoked by an inflammatory environment 
caused by the electroporation. Thus, the fusion of endocytic vesicles – containing the peptides processed by the lysosomal pathway – with vesicles containing MHC-II 
molecules of DCs (9), allows the presentation of epitopes to the TCD4 lymphocytes at the cell surface (10), with the activation of helper response and generation of 
memory cells. The TCD4+ lymphocytes, in turn, play a fundamental role in the activation (11) and maturation of B cell affinity inside the germinal centers (12) for the 
activation of the humoral response (T cell-dependent B cell activation) generating plasmatic cells that can produce high-affinity neutralizing antibodies, as well as 
memory cells. Another possible activation pathway for humoral response, but with the induction of a weaker immune response, is the direct linkage to the vaccine 
antigen with B cell receptors (BCRs) (T-cell independent B cell activation).

Table 2. Usage of linker sequences in different studies with the aim to ensure the correct processing/directing of peptides in multiepitope vaccines.

Linker 
Sequence Description Reference

Ubiquitin The introduction of the coding sequence of the ubiquitin gene at one extremity of the vaccine construction 
aims to favor the peptide degradation by proteasomes during the epitope-specific CTL response

56–58

GPGPG The introduction of this spacer between MHC-II binding epitopes in multiepitope vaccine construction 
promotes the disruption of junctional epitopes in these vaccines, restoring immunogenicity against the 
target epitopes during helper response

55,59–61

EAAAK It consists of a helical linker to control the distance and reduce the interference between the domains of 
functional proteins with other protein regions in the vaccine construction. Thus, it is ideally incorporated into 
N and C-terminal of B cell conformational epitopes

59,60,62

ALL and SSL These linkers are expected to direct the cleavage to the C-terminus of the preceding peptide and to the 
N-terminus of the next peptide

63

RKSYL and RKSY Similar to the previous sequence, these motifs are expected to direct the cleavage to the C-terminus of the 
proceeding peptide, but enable a more flexible cleavage at the N-terminus of the next peptide with multiple 
potential cleavage sites, optimizing binding to TAP transporter

63

KFLRQY; ADRIW; ADKQW; ADRQW; 
ADNQY; AKRW; ADNIW.

The initial amino acids of each of these flanking sequences aim to optimize the processing and release of 
epitopes by the proteasome, and, after cleavage, the following amino acids provide binding sites to TAP 
transporter

57

ARY This sequence is a high-affinity motif for TAP recognition based on the preferences of human TAP for flanking of 
epitopes in the polyepitope construct

64

R/K-R/K The introduction of a dibasic motif flanking MHC-II binding epitopes in a polyepitope construct enhances its 
processing, since these motifs represent cleavage sites for lysosomal cathepsins B and L, thus optimizing 
helper response activation

56,65

RKRSHAGYQTI; YQTI This sequence represents the C-terminal tyrosine-based motif of LAMP-1 (lysosome-associated membrane 
protein-1) glycoprotein and its function is to direct the immunogen from the secretory pathway to lysosomes 
for degradation, where the peptide fragments bind to MHC class II molecules. Thus, this strategy allows the 
redirecting of gene vaccines activation route for the activation of the helper response as well

56,66
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Figure 2. Structure of a hypothetical synthetic multiepitope vaccine construct containing adjuvant and linkers sequences. In this example, the construct contains 
sequences that act as adjuvants, which are capable of increasing the immunogenicity of nucleic acid vaccines. Moreover, linker sequences were added between each 
epitope in order to provide proteasomal and lysosomal processing sites, and TAP transporter binding sites. Concerning the epitopes, in this construction MHC-I, MHC-II 
ligands, and linear B cell epitopes were added in order to induce both cellular and humoral responses. The epitopes shown in purple are intended for binding to MHC-I 
molecules and must have between 8 and 11 amino acids. In light blue, the MHC-II ligands are found, these must feature more than 11 amino acids. Meanwhile, the 
epitopes for B cell activation are shown in gray and contain larger-sized epitopes, up to about 16 aa. LK: Linker, ADJ: Adjuvant.

Table 3. In silico methods to predict T cells epitopes.

Method Description Reference

Artificial Neural Network 
(ANN)

Corresponds to a system similar to the brain neural connection, where each cell receives a signal and sends it to another cell. 
The union between these cells works as a network 

In an ANN, each cell would be a knot that contains a kind of analysis. One or more entry information are inserted and pass 
through this knot, resulting, at the end of the network, in different exit information 

Example: An ANN to predict epitopes creates layers with weights that correspond to characteristics related to the binding 
affinity between the peptide and the MHC. Thus, by identifying the presence of a certain characteristic, the software goes to 
the next knot in the network to verify the status of that peptide in relation to another characteristic, and so forth, forming 
something similar to a status matrix with n characteristics

80,85

NetMHCpan 4.0 Uses an ANN method to predict epitopes using peptide sequences as entry information, and the exit information is generated 
from the binding affinity data and elution of linkers with mass spectrometer. This method structure is pan because it analyzes 
just one model, HLA data (Human MHC), and the peptide length

80

Stabilized Matrix 
Method (SMM)

It is a method that does specificity modeling of sequences of biological processes that can be quantified. When it comes to 
epitope prediction, it can be used to predict information regarding the peptide capacity to bind to MHC, TAP transport, and 
proteasome cleavage The entry data corresponds to amino acid or nucleotide sequences, where the coding is done binarily (0 
or 1). To each nucleotide sequence, the weight of each residue that can occur in each position of the sequence will be 
multiplied. The result of this product is the value of prediction y. To measure the efficacy of the process, an experimental 
average y value will be generated

82–84,86

Support Vectors 
Machine (SVM)

Through machine learning and statistic learning theory, a model capable of recognizing linear and nonlinear data patterns is 
created. The data is classified by Kernel functions, linear, radial basis, string, and others 

For epitope prediction, the SVM is used in the differentiation among peptides that are T cell epitopes from those that are not 
epitopes

79

NetCTL It is a prediction method by ANN that uses information about binding affinity, TAP efficacy, and peptide cleavage via 
proteasomes 

To measure the binding affinity of each peptide to the MHC-I, values are attributed to each peptide that is inside an interval that 
has extreme values 0 (low affinity) and 1 (high affinity) 

To predict cleavage through the proteasome pathway for residues that are used in the NetChop 2.0 C-term 2.0, NetChop C-term, 
and NetChop 20S-3.0 

The TAP transport efficacy is measured through SMM

79,82,83,87– 

89

NetCTLpan Epitope prediction in different vertebrate species (pan-specific), amongst which is the human species 
The NetCTLpan differentiation is the possibility of adjusting different parameters, such as choosing the species; selecting 

species-specific alleles, and for human studies, it is possible to choose the size of the peptide between 8 and 11-mer; allele 
selection that is more commonly found in the population; determining the minimal score limit for the prediction and the 
percentage to consider the prediction as positive (peptides are considered epitopes; defining the proteasome cleavage 
weights and TAP efficacy, and higher these weights are, higher the possibility of finding epitopes 

Prediction residues can be seen in two formats, using a graphic that shows the peptides in green as epitopes and in red as non- 
epitopes, and through a table that shows in columns the MHC prediction values, TAP efficacy, proteasome cleavage score, 
and the general/combined prediction, and ranking in crescent order of the prediction percentages of a set of peptides with 
a length of 9 amino acids

79,90

NetChop Allows the choice of prediction methods named NetChop C-term 3.0 and NetChop 20S-3.0 and allows the alteration of limit 
score that might interfere with specificity and sensitivity 

The prediction results can be seen in a similar way to the NetCTLpan, differing only by the table visualization because it presents 
information related to amino acid residues

79

Consensus Gather different epitope prediction methods in a single open approach, with the aim of obtaining the best performance of the 
peptide selection process to those considered epitopes

91
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for each protein of the new coronavirus enables the prediction of 
epitopes. This step is fundamental to the construction of 
a synthetic antigen that can be used in nucleic acid approaches 
against COVID-19 because it corresponds to the selection of 
peptides from virus proteins that could bind to MHC (major 
histocompatibility complex) molecules capable of inducing 
T (CD8+ and CD4+) and B cells activation.

The predictions can be carried out through different computa-
tional methods, such as Artificial Neural Networks, NetMHCpan, 
Stabilized Matrix Method (SMM), Matrix Vector Support (SVM), 
NetCL/NetCLpan/NetCHOP, Consensus,79–85 among others 
(Table 3). Those methods are used in different databases and 
online servers, such as the Immune Epitope Database and 
Analysis Resource (IEDB) (https://www.iedb.org/), Virus 
Pathogen Resource (ViPR) (https://www.viprbrc.org/), 
NetCTLpan – 1.1,90 NetMHCpan – 4.0,80 NetMHCstab – 1.0,92 

NetMHCstabpan – 1.0,93 NetCTL 1.2,94 ProPred-I and 
ProPred,95,96 RANKPEP,97 among others.

Some of these tools and servers are already used in COVID- 
19 research, such as Abdelmageed et al.,71 Rahman et al.,75 and 
Dong et al.,59 who have used the IEDB tools to select T cell 
epitopes, Ahmed et al.70 used ViPR to predict T and B cell 
epitopes, Bhattacharya et al.73 used the ProPred-I and ProPred 
to predict MHC-I and MHC-II linker epitopes, Grifoni et al.98 

did the epitope prediction of MHC-II using the NetMHCpan 
EL – 4.0 server, and Enayatkhani et al.74 predicted MHC-I and 
MHC-II epitopes using the RANKPEP server in order to 
design a multiepitope vaccine against COVID-19.

These immunoinformatics tools available in the databases 
and servers demand that the type of human MHCs (HLAs) of 
interest is informed, so it can provide the epitopes for T CD8 
+ and CD4 + . For vaccines against COVID-19,99 a list of HLAs 
with high affinity to SARS-CoV-2 peptides was made available, 
displaying the worldwide amplitude that can be used in predic-
tion tools. Some of the alleles that present a strong binding with 
these peptides were HLA-A*02:11, HLA-A*02:22, HLA-A*02 
:02, HLA-A*02:03, HLA-A*02:06, HLA-B*15:03, HLA-B*15:17, 
HLA-B*35:10, HLA-B*15:25, HLA-B*15:39, HLA-C*03:02, 
HLA-DRB1*01:01, HLA-DRB1*10:01, HLA-DRB1*01:04, HLA- 
DRB1*11:02, HLA-DRB1*13:01. All these alleles were capable of 
binding to more than 100 peptides. Besides these, other HLAs 
ligands to SARS-CoV-2 can be found in the consortium formed 
during the pandemics, named COVID-19 HLA & 
Immunogenetics (http://www.hlacovid19.org/), which has 
a specific database for those who work with COVID-19. 
Another database containing HLAs of different populations 

worldwide is the Allele Frequency Net Database,100 which was 
used by Moura et al.76 to identify epitopes in the S protein of 
SARS-CoV-2.

According to the processing of peptides by the cell protea-
some, the efficiency of its displacement by the TAP channel, 
and the binding capacity to HLAs molecules, it is possible to 
detect potential epitopes.82 The NetChop-3.1 server89 detects 
the peptide from the proteasomal cleavage sites, while the 
MHC I processing tool (Proteasome, TAP)84 was used in the 
in silico design for the COVID-19 vaccine from S, M, and 
E proteins done by Rahman et al.,75 which generates 
a ranking based on the potential of each T cell epitope.

The peptides that have a higher potential to be considered a T 
cell epitope must go through an immunogenicity analysis since 
not all peptides are immunogenic.101 This analysis generally 
consists of an evaluation of the peptide capacity of inducing 
lymphocyte activation. It can be done using a tool available in 
the IEDB named Class I Immunogenicity,102 as suggested by 
Kardani et al.,103 or the C-ImmSim server,104 as used by Dong 
et al.59 for the construction of in silico multiepitope vaccine 
against COVID-19. It can also be done through the 
NETMHCpan – 4.0 server,80 which was used by Moura et al.76

The general method for the prediction of B cells is based on 
the residual value and the informed quantity of amino acids 
around the residue. The amino acid amplitude capable of 
defining a peptide that has the antigenic potential varies 
between 5 and 7 amino acids. Rahman et al.75 performed this 
analysis in their coronavirus studies using the ABCPred 
servers105 and BepiPred-2.0.106 The same methods are also 
available in the IEDB database, the Antibody Epitope 
Prediction (http://tools.iedb.org/bcell/), which was used by 
Bhattacharya et al.73 and Grifoni et al.98 The prediction tool 
available in the Virus Pathogen Resource (ViPR) (https://www. 
viprbrc.org/) was used in the SARS-CoV-2 study done by 
Ahmed et al.70

From the predicted epitopes it is possible to identify their 
antigenic potential. In studies related to COVID-19, such as the 
ones done by Baruah and Bose,72 Bhattacharya et al.,73 Dong 
et al.,59 Enayatkhani et al.74 and Rahman et al.,75 the antigeni-
city analysis was done through the VaxiJen server.107

Epitope clusters

It is possible to have sequence similarities among the predicted 
epitopes, thus allowing for clusters to be created. Clusters are 
groups that unite the epitopes that were predicted over the 

Figure 3. Summary showing, step by step, the criteria for the development of a COVID-19 vaccine through the construction of synthetic antigens.
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same regions. This step avoids information redundancy 
regarding the same epitope. The Epitope Cluster Analysis108 

can be used in the design for the vaccine against COVID-19, 
focusing on cluster identification, which is available at the 
IEDB. This tool gathers epitopes that have over 80% similarity 
and defines the epitopes represented in each cluster. EpiMatrix 
and ClustiMer are also servers capable of identifying epitope 
clusters that can be used in vaccine constructions, as observed 
in the study of Scholzen et al.109

Epitope conservation analysis

Among the virus protein variants, the predicted epitopes can 
be conserved or not. Thus, in order to have a vaccine that 
prolonged immunity even when faced with different variants, 
it is important to verify the level of conservation of these 
epitopes and select those that have higher conservation 
levels.103 The Epitope Conservancy Analysis tool,110 available 
at the IEDB, can be used to identify the more conserved 
epitopes of T and B cells to be added in the multiepitope 
construction against SARS-CoV-2. This tool calculates a value 
referring to the level of conservation from a certain level of 
identity (obtained by the analysis of epitope clusters) and 
defines a ranking from the generated values.

Populational coverage analysis

Considering the importance of a vaccine capable of covering 
most of the population for containing the pandemic, it is vital 
to perform an analysis of the populational coverage. This 
analysis will verify the populations around the world and 
check for common alleles capable of interacting with the epi-
topes. Kardani et al.103 mentioned different tools for in silico 
vaccine design against different pathogen microorganisms, 
amongst which is SARS-CoV-2, reporting the use of 
Population Coverage tool,111 available at the IEDB. 
Abdelmageed et al.71 and Rahman et al.75 also used this tool 
to analyze the population coverage of predicted epitopes. This 
tool calculates the coverage fractions of HLAs for the 
populations.

The best results found in this phase can define whether more 
than one vaccine will need to be designed. Kibria et al.112 

demonstrated the importance of this analysis when they realized 
that it would be needed to design two vaccines at the end of the 
study because one of the epitopes predicted presented low cover-
age for the South African population (3.15%) when compared to 
another predicted epitope (40.9%). Therefore, it was necessary to 
design a vaccine exclusive for the South African population and 
another for the rest of the populations worldwide.

Molecular docking analysis and molecular dynamics 
simulation

The epitopes that presented higher populational coverage 
values can be used in a molecular docking analysis. The dock-
ing is performed to calculate the best pose and the binding 
energy between the predicted epitopes and MHC molecules. 
ClusPro,113 PatchDock,114 HADDOCK 2.4,115 AutoDock 4.0 

(http://autodock.scripps.edu/), CABS-dock116 and ZDOCK 
3.0.2117 are some of the online servers used in many studies 
about COVID-19.59,71–76

For this kind of molecular docking, it is necessary to use 3D 
structures of the HLAs available at the Protein Data Bank 
(PDB) (https://www.rcsb.org/). Intending to aid COVID-19 
studies, the PDB has a section exclusively for SARS-CoV-2 
structures. Bhattacharya et al.73 used in their study for the 
design of a vaccine against the new coronavirus, the file with 
the docked complex so it can be visualized in PyMOL software 
(https://pymol.org/2/).

With the complexes formed with the peptides bound to 
HLA molecules, it is possible to perform a molecular dynamics 
(MD) simulation. This analysis assesses the stability of the 
peptide-HLA complex through a certain amount of time 
under specific temperature, pressure, ion presence, and water 
molecule conditions, simulating the conditions of the biologi-
cal process related to the peptide-HLA binding complex. For 
that, the complex needs to remain stable during enough time 
for lymphocyte activation.118

NAMD (https://www.ks.uiuc.edu/Research/namd/) is one 
of the programs that performs molecular dynamics simulation, 
and the Visual Molecular Dynamics (VMD) program can be 
used to visualize its results (https://www.ks.uiuc.edu/Research/ 
vmd/). Baruah and Bose72 used these programs to perform an 
MD simulation to assess the stability of the complex peptide- 
MHC of T and B cells of glycoproteins on the surface of the 
new coronavirus. Dong et al.59 used the server GROMACS 
(http://www.gromacs.org/) for MD simulations in their multi-
epitope vaccine constructions against COVID-19.

Reverse translation and synthetic antigen production

After filtering the epitopes that present higher stability in MD 
simulations, the amino acid sequences can be back translated 
into nucleotides, so a synthetic gene can be constructed. The 
Reverse Translate program119 allows the back translation of 
amino acid sequences into nucleotides. These sequences, when 
put together, form a bigger sequence composed of nucleotides 
capable of synthesizing all selected epitopes. Therefore, it is 
possible to insert it into a plasmid vector, for example, config-
uring a gene vaccine. When it enters the organism, the body 
recognizes it as a synthetic antigen and activates the immune 
system, providing the necessary response to protect the person 
who was vaccinated.78

This construction step of the candidate vaccine structure 
against SARS-CoV-2 was possible to be observed in the study of 
Enayatkhani et al.74 who constructed the secondary structure 
of the vaccine using the server PSIPRED (http://bioinf.cs.ucl. 
ac.uk/web_servers/psipred_server/psipred_overview/) and in 
silico cloned it using the SnapGene software (https://www. 
snapgene.com/). Dong et al.59 opted to use the JCat tool120 to 
design their multiepitope vaccine against COVID-19.

The use of different computational tools for the prediction 
and analysis of epitopes allows that only virtually the best 
epitopes are selected, with the best results of immunogenicity, 
conservation, populational coverage, binding energy, and sta-
bility. Therefore, these filters can make vector-based 
approaches faster and more efficient.121
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DNA and RNA based vaccines are essentially poorly 
immunogenic,122 thus, the administration of adjuvants is 
essential to overcome this limitation.123 An important class of 
adjuvants are Toll-like receptors (TLR) ligands. When stimu-
lated, the TLR rapidly identify these molecules as “dangerous” 
and trigger the production of pro-inflammatory cytokines, as 
well as the activation of innate immune response, and the 
increase of antigen presentation to lymphocytes by dendritic 
cells (DCs). Examples of TLRs agonist are the TLR-9 agonist 
composed of CpG motifs, which are capable of inducing 
a strong cytotoxic response124 and the TLR-3 agonist molecule 
polyriboinosinic polyribocytidylic acid [Poly(I:C)], which is 
a double-stranded RNA analogue capable of inducing cell 
signaling through multiple inflammatory pathways.125,126 

Another promising class of immunomodulator are cytokines, 
since these proteins play a critical role in immune cell signal-
ing. Several studies have included plasmids encoding cytokines 
in their assays,127 such as the use of IL-2 and IL-12 in vaccines 
for influenza,128 SARS-CoV,129 and HIV130–132 which demon-
strated the significant increase of immunogenicity. Finally, it is 
essential to ensure the efficiency of the vaccine transfection, so 
the most promising delivery systems for nucleic acid 
approaches include electroporation (EP) for DNA-based vac-
cines and lipid nanoparticles (LNPs) for mRNA vaccines, 
resulting in increased uptake of the vaccine plasmid and con-
sequently increasing its efficiency.133–135

Conclusion

The COVID-19 pandemic brought to light that viral diseases 
have the potential of decimating millions of people in a short 
amount of time, something that happened before until efficient 
vaccines were developed that allowed the control of these 
diseases. Such vaccines were developed by classic platforms 
that contributed to major advances in public health, such as 
the eradication of smallpox. However, certain limitations are 
associated with these platforms, which make them less suscep-
tible to the rapid response that a pandemic requires. We are 
currently facing an unprecedented effort at accelerated speed 
during vaccine development, in which numerous research 
groups worldwide have been working simultaneously, along 
with governmental and private efforts to try to curb the 
infection.

The enormous advances in molecular engineering and 
biotechnology in recent decades have enabled the develop-
ment of increasingly efficient bioactive molecules, such as 
the latest generation vaccines. Such vaccine platforms have 
numerous advantages, such as greater safety; better immune 
response directioning; the possibility of coverage against 
multiple viral subtypes; the fast development, production, 
and ease of storage, which justifies the growing effort to 
establish these vaccine strategies. Additionally, the data-
bases and the bioinformatics tools currently available 
allow the prediction of the most promising epitopes to 
use in essays in vivo, also allowing rapid replacement of 
these epitopes in other vaccine constructs in response to 
pathogen mutations, thus preventing epidemics with emer-
ging viral subtypes.

The current pandemic context is surrounded by chal-
lenges. One of them is the development in record time of 
a vaccine for a new virus in which it is still spreading at 
alarming rates and constantly mutating, in which there is 
a need for the production and distribution of billions of 
doses. In addition, the immunopathogenesis of COVID-19 
is not fully understood, and previous studies from vaccines 
against the following viruses (SARS-CoV and MERS-CoV) in 
some animal models raised safety concerns regarding Th2 
mediated immunopathology.136

Another challenge is the reconsideration of current 
approaches to regulatory assessment and the licensing process 
of new vaccine platforms by government agencies in order to 
ensure the safety and efficacy of these new vaccines, which is 
a time-consuming factor. However, time is a crucial element in 
the current context, since the SARS-CoV-2 virus reached an 
average worldwide infection rate of 828 thousand people a day 
and 14,7 thousand deaths during the peak of the pandemic (to 
date). History showed us that these crises also generate unique 
opportunities for the development of new technologies, and it 
is possible that the learning generated with SARS-CoV-2 will 
revolutionize vaccine development technology for human 
usage, which is already proving to be highly effective and safe, 
and therefore, this can open the field to many possibilities that 
are not restricted to prophylactic but also therapeutic purposes.
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